Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 727
1.
Phys Chem Chem Phys ; 26(19): 14364-14373, 2024 May 15.
Article En | MEDLINE | ID: mdl-38712391

Using density functional theory calculations we investigate the formation, structure and electronic properties of gh-C3N4-supported Ni-Co (Ni-Co/gh-C3N4) dual-atom catalysts and Ni1(Co1) single-metal catalysts, as a paradigmatic example of single-atom versus few-atom catalysts. An inverted mold assumption is proposed to identify the factors determining the number, shape and packing manner of metal atoms inside the pores of gh-C3N4. The area matching between virtual fragments and metal fillers and lattice inheritance from N coordination and metal aggregates allow for a stable Ni-Co/gh-C3N4, which would possess more active sites and a more complex structure-activity relation than single-atom doping. The hydrogen production behavior and catalytic activity of this catalyst are comprehensively discussed. Ni-Co/gh-C3N4 exhibits higher hydrogen evolution activity than Ni1(Co1)/gh-C3N4 at an appropriate H coverage, which is comparable to Pt under analogous conditions. This strategy, derived from the inverted mold assumption, is deemed to be a simple and easy-to-operate method for designing and building metal aggregates confined inside the pores of two-dimensional materials and in the cavities of nanoparticles for few-atom catalysts.

2.
Cancer Res ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38718319

Metabolic reprogramming is a hallmark of cancer. In addition to metabolic alterations in the tumor cells, multiple other metabolically active cell types in the tumor microenvironment (TME) contribute to the emergence of a tumor-specific metabolic milieu. Here, we defined the metabolic landscape of the TME during progression of head and neck squamous cell carcinoma (HNSCC) by performing single-cell RNA sequencing (scRNA-seq) on 26 human patient specimens, including normal tissue, pre-cancerous lesions, early-stage cancer, advanced-stage cancer, lymph node metastases, and recurrent tumors. The analysis revealed substantial heterogeneity at the transcriptional, developmental, metabolic, and functional levels in different cell types. SPP1+ macrophages were identified as a pro-tumor and pro-metastatic macrophage subtype with high fructose and mannose metabolism, which was further substantiated by integrative analysis and validation experiments. An inhibitor of fructose metabolism reduced the proportion of SPP1+ macrophages, reshaped the immunosuppressive TME, and suppressed tumor growth. In conclusion, this work delineated the metabolic landscape of HNSCC at a single-cell resolution and identified fructose metabolism as a key metabolic feature of a pro-tumor macrophage subpopulation.

3.
Ecol Lett ; 27(5): e14415, 2024 May.
Article En | MEDLINE | ID: mdl-38712683

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Plant Leaves , Carbon Cycle , Carbon/metabolism
4.
Talanta ; 276: 126145, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38723473

Due to the common contamination of multiple mycotoxins in food, which results in stronger toxicity, it is particularly important to simultaneously test for various mycotoxins for the protection of human health. In this study, a disposable immunosensor array with low-cost was designed and fabricated using cellulose paper, polydimethylsiloxane (PDMS), and semiconducting single-walled carbon nanotubes (s-SWCNTs), which was modified with specific antibodies for mycotoxins AFB1 and FB1 detection. The strategy for fabricating the immunosensor array with two individual channels involved a two-step protocol starting with the form of two kinds of carbon films by depositing single-wall carbon nanotubes (SWCNTs) and s-SWCNTs on the cellulose paper as the conductive wire and sensing element, followed by the assembly of chemiresistive biosensor with SWCNTs strip as the wire and s-SWCNTs as the sensing element. After immobilizing AFB1-bovine serum albumin (AFB1-BSA) and FB1-bovine serum albumin (FB1-BSA) separately on the different sensing regions, the formation of mycotoxin-BSA-antibody immunocomplexes transfers to electrochemical signal, which would change with the different concentrations of free mycotoxins. Under optimal conditions, the immunosensor array achieved a limit of detection (LOD) of 0.46 pg/mL for AFB1 and 0.34 pg/mL for FB1 within a wide dynamic range from 1 pg/mL to 20 ng/mL. Furthermore, the AFB1 and FB1 spiked in the ground corn and wheat extracts were detected with satisfactory recoveries, demonstrating the excellent practicality of this established method for simultaneous detection of mycotoxins.

5.
Oral Dis ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38696357

OBJECTIVE: This study aimed to clarify the relationship between FADD amplification and overexpression and the tumor immune microenvironment. METHODS: Immunohistochemical staining and bioanalysis were used to analyze the association between FADD expression in tumor cells and cells in tumor microenvironment. RNA-seq analysis was used to detect the differences in gene expression upon FADD overexpression. Flow cytometry and multicolor immunofluorescence staining (mIHC) were used to detect the differences in CD8+ T-cell infiltration in FADD-overexpressed cells or tumor tissues. RESULTS: Overexpression of FADD significantly promoted tumor growth. Cells with high FADD expression presented high expression of CD276 and FGFBP1 and low expression of proinflammatory factors (such as IFIT1-3 and CXCL8), which reduced the percentage of CD8+ T cells and created a "cold tumor" immune microenvironment, thus promoting tumor progression. In vivo and in vitro experiment confirmed that tumor tissues with excessive FADD expression exhibited CD8+ T-cell exclusion in the microenvironment. CONCLUSION: Our preliminary investigation has discovered the association between FADD expression and the immunosuppressive microenvironment in HNSCC. Due to the high frequent amplification of the chromosomal region 11q13.3, where FADD is located, targeting FADD holds promise for improving the immune-inactive state of tumors, subsequently inhibiting HNSCC tumor progression.

6.
Int J Biol Macromol ; 269(Pt 2): 132279, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734344

Aptasensors for detection of ochratoxin A (OTA) have been extensively studied, but the majority of them require costly and large-scale equipment as signal readers. Herein, a photothermal aptasensor capable of portable detection of OTA through a thermometer was developed on basis of aptamer structural switching and rolling circle amplification (RCA)-enriched DNAzyme. Oligonucleotides and alkaline phosphatase (ALP) modified magnetic beads were prepared. The binding of aptamers to OTA led to the release of ALP labeled complementary DNA. After magnetic separation, ALP catalyzed the padlock dephosphorylation, inhibiting the subsequent RCA reaction. This process converted the OTA concentration into the amount of the photothermal reagent oxTMB produced from the catalytic reaction induced by RCA-enriched DNAzyme. Under the optimal conditions, the detection limit (LOD) of this aptasensor was 2.28 nM in a clean buffer, while the LOD reached 2.43 nM in 2 % grape juice. The good performance of the photothermal aptasensor makes it possible to measure OTA pollution in low resource environments.

7.
Sci Bull (Beijing) ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38641511

Lung cancer is an exceedingly malignant tumor reported as having the highest morbidity and mortality of any cancer worldwide, thus posing a great threat to global health. Despite the growing demand for precision medicine, current methods for early clinical detection, treatment and prognosis monitoring in lung cancer are hampered by certain bottlenecks. Studies have found that during the formation and development of a tumor, molecular substances carrying tumor-related genetic information can be released into body fluids. Liquid biopsy (LB), a method for detecting these tumor-related markers in body fluids, maybe a way to make progress in these bottlenecks. In recent years, LB technology has undergone rapid advancements. Therefore, this review will provide information on technical updates to LB and its potential clinical applications, evaluate its effectiveness for specific applications, discuss the existing limitations of LB, and present a look forward to possible future clinical applications. Specifically, this paper will introduce technical updates from the prospectives of engineering breakthroughs in the detection of membrane-based LB biomarkers and other improvements in sequencing technology. Additionally, it will summarize the latest applications of liquid biopsy for the early detection, diagnosis, treatment, and prognosis of lung cancer. We will present the interconnectedness of clinical and laboratory issues and the interplay of technology and application in LB today.

8.
Anal Chem ; 96(19): 7497-7505, 2024 May 14.
Article En | MEDLINE | ID: mdl-38687987

Redox potential plays a key role in regulating intracellular signaling pathways, with its quantitative analysis in individual cells benefiting our understanding of the underlying mechanism in the pathophysiological events. Here, a metal organic framework (MOF)-functionalized SERS nanopotentiometer has been developed for the dynamic monitoring of intracellular redox potential. The approach is based on the encapsulation of zirconium-based MOF (Uio-66-F4) on a surface of gold-silver nanorods (Au-Ag NRs) that is modified with the newly synthesized redox-sensitive probe ortho-mercaptohydroquinone (HQ). Thanks to size exclusion of MOF as the chemical protector, the nanopotentiometer can be adapted to long-term use and possess high anti-interference ability toward nonredox species. Combining the superior fingerprint identification of SERS with the electrochemical activity of the quinone/hydroquinone, the nanopotentiometer shows a reversible redox responsivity and can quantify redox potential with a relatively wide range of -250-100 mV. Furthermore, the nanopotentiometer allows for dynamic visualization of intracellular redox potential changes induced by drugs' stimulation in a high-resolution manner. The developed approach would be promising for offering new insights into the correlation between redox potential and tumor proliferation-involved processes such as oxidative stress and hypoxia.


Gold , Metal-Organic Frameworks , Oxidation-Reduction , Silver , Zirconium , Metal-Organic Frameworks/chemistry , Humans , Gold/chemistry , Silver/chemistry , Zirconium/chemistry , Spectrum Analysis, Raman , Nanotubes/chemistry , Hydroquinones/chemistry , Metal Nanoparticles/chemistry
9.
Chem Sci ; 15(15): 5775-5785, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38638235

Bacterial infections, as the second leading cause of global death, are commonly treated with antibiotics. However, the improper use of antibiotics contributes to the development of bacterial resistance. Therefore, the accurate differentiation between bacterial and non-bacterial inflammations is of utmost importance in the judicious administration of clinical antibiotics and the prevention of bacterial resistance. However, as of now, no fluorescent probes have yet been designed for the relevant assessments. To this end, the present study reports the development of a novel fluorescence probe (CyQ) that exhibits dual-enzyme responsiveness. The designed probe demonstrated excellent sensitivity in detecting NTR and NAD(P)H, which served as critical indicators for bacterial and non-bacterial inflammations. The utilization of CyQ enabled the efficient detection of NTR and NAD(P)H in distinct channels, exhibiting impressive detection limits of 0.26 µg mL-1 for NTR and 5.54 µM for NAD(P)H, respectively. Experimental trials conducted on living cells demonstrated CyQ's ability to differentiate the variations in NTR and NAD(P)H levels between A. baumannii, S. aureus, E. faecium, and P. aeruginosa-infected as well as LPS-stimulated HUVEC cells. Furthermore, in vivo zebrafish experiments demonstrated the efficacy of CyQ in accurately discerning variations in NTR and NAD(P)H levels resulting from bacterial infection or LPS stimulation, thereby facilitating non-invasive detection of both bacterial and non-bacterial inflammations. The outstanding discriminatory ability of CyQ between bacterial and non-bacterial inflammation positions it as a promising clinical diagnostic tool for acute inflammations.

10.
ACS Sens ; 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644577

A core-shell nanostructure of gold nanoparticles@covalent organic framework (COF) loaded with palladium nanoparticles (AuNPs@COF-PdNPs) was designed for the rapid monitoring of catalytic reactions with surface-enhanced Raman spectroscopy (SERS). The nanostructure was prepared by coating the COF layer on AuNPs and then in situ synthesizing PdNPs within the COF shell. With the respective SERS activity and catalytic performance of the AuNP core and COF-PdNPs shell, the nanostructure can be directly used in the SERS study of the catalytic reaction processes. It was shown that the confinement effect of COF resulted in the high dispersity of PdNPs and outstanding catalytic activity of AuNPs@COF-PdNPs, thus improving the reaction rate constant of the AuNPs@COF-PdNPs-catalyzed hydrogenation reduction by 10 times higher than that obtained with Au/Pd NPs. In addition, the COF layer can serve as a protective shell to make AuNPs@COF-PdNPs possess excellent reusability. Moreover, the loading of PdNPs within the COF layer was found to be in favor of avoiding intermediate products to achieve a high total conversion rate. AuNPs@COF-PdNPs also showed great catalytic activities toward the Suzuki-Miyaura coupling reaction. Taken together, the proposed core-shell nanostructure has great potential in monitoring and exploring catalytic processes and interfacial reactions.

11.
MedComm (2020) ; 5(4): e520, 2024 Apr.
Article En | MEDLINE | ID: mdl-38576455

Ferroptosis has been confirmed to be associated with various diseases, but the relationship between ferroptosis and atherosclerosis (AS) remains unclear. Our research detailly clarified the roles of ferroptosis in three continuous and main pathological stages of AS respectively (injury of endothelial cells [ECs], adhesion of monocytes, and formation of foam cells). We confirmed that oxidized low-density lipoprotein (ox-LDL), the key factor in the pathogenesis of AS, strongly induced ferroptosis in ECs. Inhibition of ferroptosis repressed the adhesion of monocytes to ECs by inhibiting inflammation of ECs. Ferroptosis also participated in the formation of foam cells and lipids by regulating the cholesterol efflux of macrophages. Further research confirmed that ox-LDL repressedthe activity of glutathione peroxidase 4 (GPX4), the classic lipid peroxide scavenger. Treatment of a high-fat diet significantly induced ferroptosis in murine aortas and aortic sinuses, which was accompanied by AS lesions and hyperlipidemia. Treatment with ferroptosis inhibitors significantly reduced ferroptosis, hyperlipidemia, and AS lesion development. In conclusion, our research determined that ox-LDL induced ferroptosis by repressing the activity of GPX4. Antiferroptosis treatment showed promising treatment effects in vivo. Ferroptosis-associated indexes also showed promising diagnostic potential in AS patients.

12.
Immunology ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561001

Radiation-induced fibrosis (RIF) is a severe chronic complication of radiotherapy (RT) manifested by excessive extracellular matrix (ECM) components deposition within the irradiated area. The lung, heart, skin, jaw, pelvic organs and so on may be affected by RIF, which hampers body functions and quality of life. There is accumulating evidence suggesting that the immune microenvironment may play a key regulatory role in RIF. This article discussed the synergetic or antagonistic effects of immune cells and mediators in regulating RIF's development. Several potential preventative and therapeutic strategies for RIF were proposed based on the immunological mechanisms to provide clinicians with improved cognition and clinical treatment guidance.

13.
Zookeys ; 1196: 271-283, 2024.
Article En | MEDLINE | ID: mdl-38586078

A new species of pomatiopsid freshwater snail, Fenouiliaundata Chen & He, sp. nov., is described from Guangxi, China, based on morphological and molecular evidence. The new species can be distinguished from its congeners by the following combination of characters: shell with low, prosocline, rounded axial ribs and fine spiral striae, broader than high; aperture broader than shell height; radula with lateral teeth have only two or three faint, wavy ridges on inner side. A molecular analysis of partial mitochondrial COI and 16S DNA sequences supports the systematic position of the new taxon.

14.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38587649

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Berberine , Berberine/analogs & derivatives , Animals , Berberine/pharmacology , Urease , Ammonia , Chlorides , Rumen , Enzyme Inhibitors/pharmacology , Nitrogen , Ruminants
15.
Ecotoxicol Environ Saf ; 277: 116376, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657453

The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.


Biodegradation, Environmental , Cadmium , Festuca , Plant Leaves , Plant Roots , Plant Leaves/metabolism , Cadmium/toxicity , Cadmium/metabolism , Plant Roots/metabolism , Festuca/metabolism , Festuca/drug effects , Agricultural Irrigation/methods , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Water/chemistry
16.
J Comp Physiol B ; 194(2): 191-202, 2024 Apr.
Article En | MEDLINE | ID: mdl-38522042

Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (- 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, - 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, - 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, - 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.


Antigens, CD , Ferritins , Hepcidins , Hibernation , Homeostasis , Iron , Muscle, Skeletal , Muscular Atrophy , Receptors, Transferrin , Sciuridae , Animals , Sciuridae/physiology , Hibernation/physiology , Iron/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Hepcidins/metabolism , Receptors, Transferrin/metabolism , Ferritins/metabolism , Male , Spleen/metabolism , Cation Transport Proteins/metabolism
17.
Int J Oral Sci ; 16(1): 26, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548747

SEMA7A belongs to the Semaphorin family and is involved in the oncogenesis and tumor progression. Aberrant glycosylation has been intricately linked with immune escape and tumor growth. SEMA7A is a highly glycosylated protein with five glycosylated sites. The underlying mechanisms of SEMA7A glycosylation and its contribution to immunosuppression and tumorigenesis are unclear. Here, we identify overexpression and aberrant N-glycosylation of SEMA7A in head and neck squamous cell carcinoma, and elucidate fucosyltransferase FUT8 catalyzes aberrant core fucosylation in SEMA7A at N-linked oligosaccharides (Asn 105, 157, 258, 330, and 602) via a direct protein‒protein interaction. A glycosylated statue of SEMA7A is necessary for its intra-cellular trafficking from the cytoplasm to the cytomembrane. Cytokine EGF triggers SEMA7A N-glycosylation through increasing the binding affinity of SEMA7A toward FUT8, whereas TGF-ß1 promotes abnormal glycosylation of SEMA7A via induction of epithelial-mesenchymal transition. Aberrant N-glycosylation of SEMA7A leads to the differentiation of CD8+ T cells along a trajectory toward an exhausted state, thus shaping an immunosuppressive microenvironment and being resistant immunogenic cell death. Deglycosylation of SEMA7A significantly improves the clinical outcome of EGFR-targeted and anti-PD-L1-based immunotherapy. Finally, we also define RBM4, a splice regulator, as a downstream effector of glycosylated SEMA7A and a pivotal mediator of PD-L1 alternative splicing. These findings suggest that targeting FUT8-SEMA7A axis might be a promising strategy for improving antitumor responses in head and neck squamous cell carcinoma patients.


Head and Neck Neoplasms , Semaphorins , Humans , Glycosylation , Squamous Cell Carcinoma of Head and Neck , CD8-Positive T-Lymphocytes/metabolism , Fucosyltransferases/metabolism , Tumor Microenvironment , RNA-Binding Proteins/metabolism , Antigens, CD/metabolism , Semaphorins/metabolism , GPI-Linked Proteins/metabolism
18.
Artif Intell Med ; 150: 102827, 2024 Apr.
Article En | MEDLINE | ID: mdl-38553166

Due to the surging of cost, artificial intelligence-assisted de novo drug design has supplanted conventional methods and become an emerging option for drug discovery. Although there have arisen many successful examples of applying generative models to the molecular field, these methods struggle to deal with conditional generation that meet chemists' practical requirements which ask for a controllable process to generate new molecules or optimize basic molecules with appointed conditions. To address this problem, a Recurrent Molecular-Generative Pretrained Transformer model is proposed, supplemented by LocalRNN and Residual Attention Layer Transformer, referred to as RM-GPT. RM-GPT rebuilds GPT model's architecture by incorporating LocalRNN and Residual Attention Layer Transformer so that it is able to extract local information and build connectivity between attention blocks. The incorporation of Transformer in these two modules enables leveraging the parallel computing advantages of multi-head attention mechanisms while extracting local structural information effectively. Through exploring and learning in a large chemical space, RM-GPT absorbs the ability to generate drug-like molecules with conditions in demand, such as desired properties and scaffolds, precisely and stably. RM-GPT achieved better results than SOTA methods on conditional generation.


Artificial Intelligence , Learning
19.
Eur J Surg Oncol ; 50(4): 108242, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460248

BACKGROUND: Preoperative neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision (TME) is a common approach for treating patients with locally advanced rectal cancer. Nevertheless, the mutational profile and its prognostic impact in surgically resected tumor specimens after nCRT remains to be clarified. METHODS: The comprehensive analysis of mutational landscape was retrospectively conducted by target regions sequencing approach that covered 150 tumor-related genes. Univariate and multivariate logistic regression and Cox regression was used to examine the association of mutation status in genes and pathways with pathological response and prognosis. Data from Memorial Sloan Kettering Cancer Center (MSK) cohort was used for comparison with our results. RESULTS: The top five commonly mutated genes in resected rectal tumor tissue samples following nCRT were TP53 (42%), APC (31%), KRAS (27%), PIK3CA (14%) and FBXW7 (11%). Mutations in the WNT pathway, which was mainly represented by APC mutation, were found to be significantly associated with tumor regression grade (TRG) 3. In our cohort, co-mutations in the receptor tyrosine kinase (RTK)/RAS and WNT pathways were found to be independently associated with reduced risk of recurrent and significantly associated with longer disease-free survival (DFS). In both our cohort and the MSK cohort, co-mutations in the TGF-ß and TP53 pathways were significantly associated with worse DFS. CONCLUSIONS: Resected rectal tumor samples from patients without complete pathological response can be appropriately used to detect mutations. Co-mutations in the TGF-ß and TP53 pathways may provide more prognostic information beyond commonly used clinical factors.


Neoadjuvant Therapy , Rectal Neoplasms , Humans , Prognosis , Retrospective Studies , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Chemoradiotherapy , Rectal Neoplasms/genetics , Rectal Neoplasms/therapy , Mutation , Neoplasm Staging , Treatment Outcome , Tumor Suppressor Protein p53/genetics
20.
Transl Vis Sci Technol ; 13(3): 19, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38517447

Purpose: The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods: The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results: Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions: Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance: By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.


Diabetic Retinopathy , Mitophagy , Sirtuin 3 , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Diabetic Retinopathy/metabolism , Epithelial Cells/metabolism , Glucose/toxicity , Mitophagy/genetics , Reactive Oxygen Species/metabolism , Retina/metabolism , Retina/pathology , Sirtuin 3/genetics , Sirtuin 3/metabolism , TOR Serine-Threonine Kinases/metabolism , Humans
...